PASSLEAF: A Pool-bAsed Semi-Supervised LEArning Framework for Uncertain Knowledge Graph Embedding

نویسندگان

چکیده

In this paper, we study the problem of embedding uncertain knowledge graphs, where each relation between entities is associated with a confidence score. Observing existing methods may discard uncertainty information, only incorporate specific type score function, or cause many false-negative samples in training, propose PASSLEAF framework to solve above issues. consists two parts, one model that can different types scoring functions predict scores and other semi-supervised learning by exploiting both positive negative estimated scores. Furthermore, leverages sample pool as relay generated further augment learning. Experiment results show our proposed learn better terms having higher accuracy prediction tail entity prediction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Optimization Framework for Graph-based Semi-supervised Learning

We develop a generalized optimization framework for graphbased semi-supervised learning. The framework gives as particular cases the Standard Laplacian, Normalized Laplacian and PageRank based methods. We have also provided new probabilistic interpretation based on random walks and characterized the limiting behaviour of the methods. The random walk based interpretation allows us to explain dif...

متن کامل

Graph-based Semi-Supervised Learning Framework for Medical Image Retrieval

As low level features can not reflect the high level semantic in medical image search, in this paper, we propose an image retrieval algorithm to combine visual concept and local features by graph-based semi-supervised learning framework. More specific, we construct a graph model by distance between images, and add density similarity measure in the label propagation progress to get the membershi...

متن کامل

Graph-Based Semi-Supervised Learning

While labeled data is expensive to prepare, ever increasing amounts of unlabeled data is becoming widely available. In order to adapt to this phenomenon, several semi-supervised learning (SSL) algorithms, which learn from labeled as well as unlabeled data, have been developed. In a separate line of work, researchers have started to realize that graphs provide a natural way to represent data in ...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2021

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v35i5.16522